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- Abstract

A portable, network-transparent communication system (NTCS)
has been developed, which supports the message passing
requirements of a distributed information retrieval system testbed.
The NTCS provides interprocess communication, while isolating the
application from issues such as physical location, underlying
communication details, and internetting. It also allows for dynamic
reconfiguration; processes can be transparently distributed across
different machines while running.

Full implementations of this NTCS have been used extensively
during its development over the last two years. It has proven to be
both highly portable, and relatively insensitive to the underlying
operating systems, with processes currently distributed among
Apollo, VAX, and Sun systems, across both TCP and Apollo MBX
communication support.

This paper emphasizes the more novel features of the NTCS,
which have proved valuable in its design: a portable dynamic
naming service is built recursively on top of the communication
Services it supports; the underlying portable internet scheme uses
the naming service which it supports, to determine routing; and the
method of inter-machine data conversion dynamically adapts to the
environment, and is independent of the conversion scheme. Finally,
some of the difficulties with supporting the necessary recursion in a
communication system are discussed.

1. Introduction

We have developed a portable, network-transparent
communication  system  (NTCS), which supports the
message-passing requirements of a large class of message-based,
distributed applications: those of a large-grain, loosely-coupled
nature, distributed at the process level [29]. All interprocess
communication takes place through the NTCS. There is no shared
memory among processes. It forms the foundation on which all
other aspects of the application are built; from the

application-specific programs themselves, to the necessary -

distributed run-time support (DRTS) services, such as process
control and time service.

The NTCS supports these requirements with a complete set of
message passing primitives allowing independent ‘processes to
communicate, while isolating them from issues such as physical

location, underlying communication details, and internetting. It also -

allows for dynamic system reconfiguration; application processes
can be distributed across muitiple machines and networks, while
running, transparent at the application interface. These aspects
make the NTCS approach ideal for testbed environments, for which
our particular implementation was targeted.

Implementations of this NTCS have been used extensively for the
past two years, as the foundation of a distributed information
retrieval system[5]. The NTCS is built on top of the existing
interprocess communication system (IPCS) on each machine,
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following a cleanly layered design. Al communication
dependencies are localized to a conversion layer, with portable
upper layers providing internet support, dynamic reconfiguration,
and a naming service. The NTCS has proven to be both highly
portable, and relatively insensitive to the underlying operating
system. It was implemented in the C programming language, and
currently runs under both Unix TCP and Apollo MBX communication
support, with processes distributed among Apollo, VAX, and Sun
systems.

1.1. Purpose of this Paper

While a brief overview of the entire architecture is given, the goal
of this paper is to emphasize the more novel aspects of the NTCS
architecture, which have also proved valuable in our
implementations. We feel that these can be advantageously applied
in any similar system. First, the NTCS addressing and naming is
supported by a completely portable dynamic naming service, which
is recursively built on top of the communication services it supports.
It is also responsible for handling dynamic reconfiguration. Second,
the underlying portable internet scheme, which supports this naming
service directly, also uses it to determine routing. Third, in support
of a heterogeneous environment, a simple yet effective method of
inter-machine data conversion is employed, which results in no
needless data conversions, and adapts dynamically to the
environment as modules are relocated. Further, it does not force a
particular conversion scheme; this can be determined entirely by the
application.  Finally, some of the difficulties associated with
supporting the necessary recursion in this environment are -
discussed. Not only is the NTCS itself recursive, but it also uses
some of the DRTS services which it supports (e.g., monitoring, time,
and error logging).

1.2. Motivation

This work evolved from the development of a message-based
architecture for a distributed information retrieval system testbed:
the Utah Retrieval System Architecture (URSA!™) project, underway
since early 1983 [5]. The URSA system is based on a number of
backend servers (e.g., for index lookup, searching, or retrieval of
documents), handling requests from host processors or user
workstations. A fundamental URSA requirement was transparent
distribution across many, possibly different processors and
communication networks.  Implementations would consist of
multiple computer systems, personal workstations, and specialized
backend search hardware, while communication systems would
range from local to long-haul networks. In addition, the URSA
testbed requirements dictated the need to dynamically add, modify,
or replace system modules, while in operation. From the NTCS
perspective, the URSA requirements were: support for a
message-based architecture, distribution across multiple machines
and networks, portability, support for dynamic reconfiguration, and a
high degree of network transparency.

Although distributed support environments of many flavors are in
existence [28, 25, 2, 4, 15], the stringent portability requirements,
the unpredictable target environment, and the need for dynamic

6th International Conference on Distributed Computing Systems

May 19-23, 1986, Cambridge MA
Copyright (c) 1986, University of Utah
Copyright (c) 1986, IEEE



reconfiguration, obviates them [29]. The chosen solution was to
develop our own support, in a highly portable manner, built on top of
the most stable base we could find; the native IPCS of each system.
The NTCS was developed explicitly for this purpose. However,
software support for any distributed system involves more than
simply grafting on a communication mechanism to whatever already
exists [4]. Aside from the obvious issue of intermodule
communication, a second, less obvious -issue is the necessary
distributed run-time support (DRTS). This includes such services as
distributed process management, file service, time service, and
monitoring. The required amount and type of such support depends
largely on the application. In the limit, this comprises a distributed
operating system (DOS) such as the LOCUS[17] or Apollo
DOMAIN [12] systems. Thus, on top of both the NTCS and the
native operating system at each machine, various DRTS services
have been added as required [27, 22].

1.3. Design Concepts

The NTCS architecture is cleanly layered. This was chosen
purely for design integrity and maintainability, and not for
compatibility with external standards, such as the ISO [3]. Since the

- NTCS was viewed as an integral system, replacement of interal
layers with ‘off the shelf’ systems was never anticipated. Also, we
were somewhat insensitive to any possible layering inefficiencies,
due to the loosely-coupled nature of the application.

The requirement for portability was the primary motivation behind
the architecture design. Consequently, the architecture supports
this with relative ease. Portability was handled in the conventional
manner of writing in a largely portable language, and localizing the
machine and network dependencies into a conversion layer. The C
programming language [8] was chosen since it was largely portable,
available on all target systems, and provided the the necessary
low-level interfaces.

Another major goal of the NTCS was to provide
network-transparency to the application. In this work,
network-transparent implies that neither the physical location of a
module nor the details of the underlying communication mechanism,
need be visible at the application interface. This transparency is
limited to communications only, and does not extend to the
operating system level [12, 17]. Such mechanisms would be built
on top of the NTCS, part of the DRTS system, much as
conventional operating system functions rely on the basic IPCS.

In addition to network transparency, the communication system
was required to support dynamic reconfiguration; that is, allow the
replacement, removal or addition of modules while the system is in
operation. This is” primarily to allow module replacement and
upgrade, as opposed to something like fast-response, dynamic load
balancing. Like transparency, this also has limitations. If careless,
conversations in progress may be adversely affected by removing a
participant, or messages may be lost. Recovery from this type of
failure belongs in the area of transaction management [23, 14], and
not in the NTCS (Section 3.5).

The entire NTCS is based on virtual circuits. From the application
viewpoint, these were appropriate since interactions among
application modules would stabilize in a set of extended
conversations, rather than random, unpredictable messages.
Further, the effect of dynamic reconfiguration would be a minor
perturbation on these conversations. In terms of underlying
communication support, many existing IPCSs and network protocols
provide the fundamental semantics of virtual circuits, and often
much more. Thus, the virtual circuit paradigm mapped cleanly
across the layers. .

As for the services provided, the application level interface

(described in detail in [29]) consists of three classes of primitives; -

the basic communication primitives, the resource location primitives,
and utilities. The NTCS provides both asynchronous and
synchronous (send/receive/reply) forms of communication
primitives. While application processes refer to each other through

logical names, all communication primitives are based on
NTCS-assigned addresses. The application first calls on the
resource location primitives to dynamically map names to
addresses. An application module need only obtain an address
once; module relocation will then occur as required, during all
communication, transparent at this interface. :

Lastly, a distributed network monitor and precision time corrector
have been developed by another project member, on top of the
NTCS[27]. Since the NTCS itself utilizes both of these services,
recursive operation in addition to that of the naming service is
observed.

2. The NTCS Architecture

2.1. Overview

The NTCS is a cleanly layered architecture, built entirely on top of
the IPCS at each machine, and utilizing one or more internal
support modules (processes). Each application process must bind
with a passive communication module (ComMod), which is the only
aspect of the NTCS visible to the application. To the application,
the ComMod is the NTCS. This is shown in Fig. 2-1.
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Figure 2-1: The Applications View of the NTCS

Internally, the NTCS is designed around a single communication
Nucleus, which provides a fundamental set of protocols and access
points supporting all NTCS functions. The Nucleus is bound with
every NTCS module, just as the ComMod is bound with every
application module. Both the ComMod and Nucleus each consist of
multiple internal layers, and both are completely passive; they do
not exist as separate processes. The internal NTCS layers are now
described from the bottom up, with the aid of a hypothetical machine
configuration in the figures.

2.2. The Nucleus Layers

The lowest layer in the NTCS is the Network Dependent Layer
(ND-Layer) (Fig. 2-2). All machine and network communication
dependencies are localized here, providing a uniform virtual circuit
interface (STD-IF) for the remainder of the NTCS. Everything above
the ND-Layer is portable, in terms of the communication interface.
Other system level interfaces exist in separate mapping layers, or
as separate subsystems of the DRTS (e.g., our process control and
time service).

A simple STD-IF was desired, and since direct compatibility with
external standards was not required, a custom interface was
specified. This incorporates only those features necessary for the
NTCS, while maintaining a high degree of compatibility with
anticipated underlying IPCSs (thus reducing the porting costs).
These ND-Layer local virtual circuits (LVCs) are limited to
destinations supported directly by the local IPCS, which may be
limited to processes on the same machine, or at best, among
machines on the same local network. The ND-Layer is not capable
of communicating between machines on networks which are not
supported directly by the endpoint IPCSs. There is no automatic
relocation or recovery from failed channels (except for retry on



open); notification is simply passed upward. The goal was to hide
the machine/network dependent details and provide a uniform
interface across all systems, with minimal complexity.
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Figure 2-2: The Nucleus Internal Layering

The Internet Protocol Layer (IP-Layer), in conjunction with one or
more Gateway modules, provides internet virtual circuits (IVCs)
across disjoint networks and machines (Fig. 2-2). IVCs are
established either as a single LVC on the local network, or as a
chained set of LVCs linked through one or more Gateways as
required (Section 4). Thus, above the IP-Layer, the interface as well
as access all points in the system is now uniform. Since the
Gateway and IP-layers exist above the ND-Layer, they are entirely
portable. This not only simplified their design, but allows the same
Gateway module to be used for all networks and machines. As with
the ND-Layer, there is no automatic relocation or recovery from
failed channels; notification is simply passed upward. The goal was
to hide the internetting details with minimal complexity.

Support for dynamic reconfiguration is handled by the Logical
Connection Maintenance Layer (LCM-Layer) (Fig. 2-2). Its primary
function is to relocate modules which may have moved, and to
recover from broken connections, though it also provides a
connectionless protocol. No explicit open or close primitives are
provided at the Nucleus interface; messages are simply
sent/received directly to/from the desired destinations, with the
underlying IVCs being established as needed.

2.3. Addressing Levels

While the Nucleus layers provide the necessary communication
mechanics, the obvious remaining issue is addressing. The NTCS
employs two levels of internal addressing, and one level of logical
naming. At the lowest level are network-dependent physical

addresses, such as TCP/IP 32-bit integers or Apollo MBX

pathnames, over which we have no control. Above this are the
internal UAdds (Unique ADDresses), which comprise a flat,
network- and location-independent address space, forming the
foundation of the NTCS. UAdds are identical to the UIDs of many
file systems [11, 7, 20], and proved useful for their intrinsic location
independence, the ease of passing them around, and the simplicity
of handling unstructured values. Two drawbacks, the difficulty of
generating them, and the problem of locating objects, are both
handled by the naming service. At the top level are logical names.
While currently limited to character strings, naming schemes can be
very application dependent [24, 1, 16, 6], and through the naming
service design, this can be readily changed.

2.4. The ComMod Layers

A naming service, built entirely on top of the Nucleus, supports all
of the dynamic address and name resolution in the NTCS, providing
the logical naming and the internal addressing services required by
both the application and the internal Nucleus layers (Section 3).
Building this on top of the Nucleus was quite advantageous. Its
design is greatly simplified (being completely portable), the system
integrity is enhanced, and the application level naming scheme, or

the naming service implementation, can be easily altered. For all
practical purposes, the naming service is nothing more than an
application built on the Nucleus; however, it is also used by the
Nucleus, forcing the Nucleus to operate recursively.

The Name Service Protocol Layer (NSP-Layer) is the single
naming service access point for all layers within the ComMod (Fig.
2-3). lts purpose is to fully isolate the ComMod from the naming
service implementation. Currently, the NSP-Layer communicates
with a single Name Server module, which maintains the
name/address database. However, other implementations are
certainly possible, with no direct impact on the NTCS.
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Figure 2-3: The Naming Service Protocol (NSP) Layer

The application interface primitives are provided by the
Application Level Interface Layer (ALI-Layer), forming the topmost
layer in the ComMod (Fig. 2-4). It simply provides the application
interface primitives from the Nucleus and NSP-Layer services,
tailors the error returns, and performs parameter checking. It may
be better described as a thin veneer.

The Application Level Interface

Figure 2-4: The ComMod Internal Layering

3. The Naming Service

A single dynamic naming service supporting all name and
address resolution within the NTCS, is built entirely on top of the
Nucleus. As such it is used by the internal Nucleus layers below, as '
well as by the application modules above. For example, it allows
the ND-Layer to resolve logical to physical addresses, the IP-Layer
to determine destination networks, the LCM-layer to determine
forwarding addresses, and the ALl-Layer to map between logical
names and addresses. The NSP-Layer completely isolates the
implementation of this service from the rest of the NTCS.

In the current implementation, the NSP-Layer communicates with
a single Name Server module, which maintains the name/address
database. The database could, however, be partially distributed
across two or more such modules, or fully distributed among the
NSP-Layers themselves, without affecting the rest of the NTCS.
This flexibility is a direct result of having built this service on top of
the Nucleus, and of isolating it with the NSP-Layer.



3.1. A Recursive Design

Building the naming service on top of the Nucleus proves to be
quite advantageous. First, it becomes completely portable, a
feature especially desirable in replicated or distributed
implementations of this service. Additionally, it eliminates
internetting considerations. The NSP-layers talk across multiple
networks in the identical manner as application modules do, further
simplifying its design. Alsg, by utilizing the same communication
services as all other modules, the system integrity is enhanced.
Lastly, the Ilogical naming scheme (seen to be very
application-dependent), or the naming service implementation, can
be changed independently of the basic communication system.

There is one difficulty with this scheme; it forces the nucleus to
support recursion. Recursion, however, is also necessary for some
DRTS functions (e.g., monitoring and distributed time), and the
interaction can be quite interesting. Some problems with recursion
are discussed in Sections 3.4 and 6.

3.2. Operation

Regardless of the particular logical naming scheme, each
module’s name information is registered with the naminrg service
when that module comes on-line. At that time, the naming service
generates a UAdd for the module, and maintains a mapping from
the module name to this address. UAdds are currently generated
by a simple monotonically increasing counter (in a distributed
implementation, a unique Name Server identifier would be
appended). Also at this time, the module creates any necessary
communication resources (e.g., a TCP/IP port, or an Apollo MBX
server mailbox), and informs the naming service of this, along with
its logical network identifier. This physical address information is
also maintained, uninterpreted, in the naming service, along with the
module’s logical name and UAdd.

Thus, module names can be resolved to UAdds, and UAdds can
be resolved to the physical address (location) information necessary
for communication. Through the naming service, the two major
problems with UAdds have been handled: generatmg them, and
locating the modules they refer to.

3.3. Address Resolution

Two address mappings must occur for communication to take
place: one from logical name to UAdd, and the other from UAdd to
the physical address. The initiator is responsible for obtaining the
UAdd from the logical name. This may be an application module,
one of the internal NTCS layers, or any of the DRTS modules.
Application and DRTS modules use the resource location primitives
while internal NTCS layers talk directly to the NSP-layer.

The ND-Layer maps from UAdd to physical address, either
through the NSP-layer services, or by information exchanged
between modules during the channel open protocol. This
information is then locally cached for future reference. In fact, once
all necessary addresses have been resolved (e.g., after the system
has been heavily used for a while), the Name Server can be
removed with no consequence, unless the system is reconfigured.

3.4. Temporary Addresses (TAdds)

There is one catch in the recursive naming service which occurs
during initial connection with the Name Server. All communication
with the Name Server is through the LCM-layer primitives, which are
based entirely on UAdds. However, since all UAdds are assigned
by the Name Server, how does the initial datacom with the Name
" Server take place, before the UAdd is assigned?

In fact, a more fundamental problem is that of obtaining the
physical address of the Name Server, since it obviously can not
provide its own, prior to connection. Gateway addresses pose a
similar problem, since they may be required to reach the Name
Server. Thus, a small number of ‘well known’ addresses are loaded
into the ComMod address tables when each module is initialized;
those of the Name Server and of certain ‘prime’ gateways. Once in

operation, other (non-prime) gateways can be located through the
naming service.

In terms of the UAdd problem, in order to avoid special ‘initial
connection’ protocols, the concept of a temporary address (TAdd)
was adopted. TAdds are identical to UAdds, except they are only
unique Jocally to the module that assigned them. Each module
assigns itself one initially, and each Nucleus layer assigns its own
TAdd to each incoming connection from a TAdd source, since the
source TAdd is not unique to the receiver. TAdds are handled like
UAdds, except that they are replaced in local tables when the real
UAdd is available. That is, upon receipt of a message from a UAdd
source, if the local tables still refer to an old TAdd, this is replaced
with the new UAdd. In this manner, TAdds for any given module will
be purged from all layers within the first two communications with
the Name Server, after which time the Name Server will be referring
to the module by its real UAdd. Note, there is nothing magical about
TAdds. They are of no use in locating objects, but simply allow all
of the internal protocols to work cleanly in this special case situation.
The actual connection establishment is handled through the
physical addresses, which in this case happen to be ‘well known’.

The use of TAdds resulted in only minor modification to the
internal Nucleus connection protocols. Further, by passing them out
of the Nucleus (e.g., to the Name Server, NSP-layer, and Gateway),
it allowed these external protocols to work unmodified at this
boundary condition. Thus, TAdds provide a way-of gracefully
dealing with initialization, without special protocols, and then
disappear very quickly. They are not useful on a permanent basis,
since they have only local significance.

3.5. Dynamic Reconfiguration

A previously resolved address may be invalid (e.g., the module
was moved, or the communication link failed). An attempt to
communicate with that address results in a simple address fault in
the ND-Layer, which will close the channel and eventually return to
the LCM-Layer. The LCM-Layer will query a local forwarding
address (UAdd) table, to no avail since this just occurred, followed
by an address fault handler which calls the NSP-layer to obtain a
forwarding UAdd. This requires some intelligence in the naming
service, first determining whether the old UAdd is really inactive,
mapping the old UAdd to its name, and then looking for a similar
name in a newer module. With our new attribute-based naming, this
is more involved.

If a new UAdd is obtained, it is entered in the local forwarding
address table, and control is returned to the calling routine. It will
now find this forwarding UAdd, observe that no connection exists,
and establish a connection in exactly the same manner as during an
initial connection. This ability allows the system to be dynamically
reconfigured, with the communication automatically reaching the
correct destination.

A new UAdd may not be available for two reasons: no
replacement module was located, or the original module is still alive.
In the first case, the call will simply return with an error. In the
second, depending on the type of call, it will attempt to reestablish
what appears to be a broken communication link.

While the NTCS, can not lose messages in a static environment,
they can be dropped due to the nature of dynamic reconfiguration.
However, even if the NTCS could guarantee that no messages were
lost due to itself (e.g., with a modified sliding window protocol),
problems could still occur. The NTCS could not recover if a failed
module had buffered messages internally, or was involved in
incomplete transactions. The first case would necessitate a
module-level recovery mechanism, while the latter would require
some type of transaction roll-back procedure. Both of these can be
viewed as part of a transaction management system [23, 14]. Only
in rare cases would the NTCS recovery be of use. Since any more
complex case would require a transaction management system (
also capable of handling the rare cases), the NTCS recovery would
be largely redundant. Given that NTCS recovery would be



insufficient in most cases, and that the higher level recovery must
eventually be built, there was no great motivation to build such
recovery into the NTCS [29]. To date, this decision has posed no
problems.  This problem of redundant recovery mechanisms
appears to be common in layered designs [21].

4. Portable Internet Support

The IP-Layer, in conjunction with one or more Gateway modules,
provides (IVCs) across disjoint networks, either as a single LVC on
the local network, or as a chained set of LVCs linked through one or

. more Gateways. Internetting was viewed as integral to the NTCS.

That is, unlike the naming service built on top of the nucleus,

. internetting was built directly. into the nucleus. It is precisely for this
reason that the naming service could be built on top.

4.1. A Recursive Design

While Gateways exist below, and support the naming service,
their logical name and connected networks are registered with the
naming service; the same as any application module. In this
manner, the internet scheme is simplified. The same resource
location protocols already available from the NSP-Layer, are used in
determining the appropriate Gateway(s) through which to establish
communication links, by both the IP-layer and the Gateways
themselves.

Further, the Gateway and IP-layers are both entirely portable.
This not only simplified their design, but allows the same Gateway
module to be used for all networks and machines. The ability for
each Gateway module to communicate with different networks is
handled by the independent ComMods with which it binds (Fig. 2-2).
Each ComMod is bound with an ND-Layer designed for one of the
networks. Thus, no network-dependent issues are visible within the
Gateway.

4.2. The Approach

The virtual circuit-based internet scheme was dictated by both the
application and lower layer NTCS requirements. The only
advantage of a packet switched approach would be to handle very
frequent module relocation, or reliability under extreme failure
conditions, neither of which was envisioned. Our solution combines
ideas from both centralized and decentralized internet
schemes [26, 18].

The compromise was to decentralize the circuit rooting and
establishment, while centralizing the topological information in the
naming service. Primarily, this eliminates any complex
inter-gateway protocols; in fact, no inter-gateway communication
ever takes place. Establishment of circuits at each point in the
system proceeds autonomously. Further, this eliminates all of the
problems of database distribution. The centralized topology was
tolerable since this information is only required at circuit
establishment time, which is relatively rare, and locally cached
values will likely be correct since reconfiguration is infrequent. Such
would not be the case if each packet were routed individually (e.g.,
the ARPAnet).

4.3. Dynamic Reconfiguration

Dynamic relocation in the internet environment is handled by
simply aborting the IVC; the LCM-Layer handles it from there.
Module death is detected by the ND-layer in any connected module
and the physical channel is closed. When the IP-layer attempts to
use the associated LVC, an error will result. It will then close down
the LVC and the associated IVC. If this is an originating module, the
error is passed up to the LCM-layer, where a new connection (or
relocation) will be attempted. If this is a Gateway, the error will be
passed out of the IP-layer to the Gateway. The Gateway will
instruct the IP-layer on the other side of the link to close the
" associated IVC. This results in the closing of the lower LVC, which
will be detected by the ND-layer of the connected module. This
process continues until the originating module is eventually reached,
at which time the error will be passed up to the LCM-layer, where a

new connection (or relocation) will be attempted. While messages
may get lost in Gateway queues during this reconfiguration, for all
practical purposes, this is indistinguishable from the issues already
discussed due to dynamic reconfiguration.

5. Data Conversions

Data type conversions may be necessary [25, 10, 19] when
moving data among different machines. For example, the byte
ordering of long integers differs between the VAX and the Sun
systems. We chose a relatively simple solution which has worked
well; it results in no needless conversions, and adapts dynamically
to the environment as modules are relocated. Furthermore, the
transport format is not dictated by the NTCS; it is determined
entirely by the application.

Messages between identical machines are simply byte-copied
(image mode) while those between incompatible machines are -
transmitted in a converted representation (packed mode). The
NTCS determines the correct mode based on the source and
destination machine types, thus avoiding needless conversions.
Placing data conversions at the upper communication layers (e.g.,
the OSI Model Presentation Level) made little sense. While the
highest layer (the application) is responsible for providing the
conversion routines, the decision to apply them is left to the lowest
layers, where the destination machine type is visible.

5.1. Image and Packed Modes

In all cases, the original application message must consist of a
contiguous block of memory (e.g., linked lists are not allowed). In
image mode, a byte-copy of the memory image is simply deposited
at the destination. In packed mode, the NTCS applies conversion
functions at each end, while transporting the message as a simple
byte stream. Each application module provides these conversion
functions to pack/unpack its messages into/from a standard
byte-stream transport format.

The particular transport format is of no consequence, as long as it
is based on a packed message; it can be entirely application
dependent. For example, embedding structure information in the
byte-stream, defining it in a ‘header’, or simply inferring it through a
message ‘type’, are all viable options.

A character representation transport format was chosen for the
current implementation, purely for simplicity. The NTCS guarantees
correct character representation across machines (reasonable since
most all are the same). Although the characters used are machine
dependent, the pack/unpack functions are built with language
constructs which are machine representation independent (e.g.,
sprintf or sscanf in C), or by custom routines (such as NTCS shift
mode, below). Standard problems with byte orderings do not arise,
since the message is viewed as a byte stream. One member of the
URSA project implemented an automatic code generating
mechanism which builds these pack/unpack routines directly from

' the message structure definitions [22].
~5.2. Shift Mode

For internal message headers, a mode efficient enough to be
used for all transfers, regardless of destination, was desired.
Character conversion was viewed as excessive overhead, and
results in undesirable variable length (or worst-case-long)
messages. In shift mode, all message headers are built with
structures of four byte integers, which can be bit field divided as
required. Any necessary data field in an NTCS control message is
built in packed mode. Since these data fields are relatively rare, this
conversion overhead is not bothersome. Message header
information is transferred by byte. shifting each header integer
sequentially into the final message, using standard high level shift
and mask routines. The remainder of the message, in packed or
image format, is transferred directly as a byte stream. At the
destination, the shift mode bytes are shifted back into the header
integers. Byte ordering problems are hidden by the high level
shif/mask routines, and by transmitting the values as a byte stream.



6. Recursion in the NTCS

Building the NTCS and DRTS support services on top of the
Nucleus introduced problems due to recursion. While not bad for
the traditional reason of speed (recursive calls are rare under
normal operation), it posed difficulties with debugging and exception
handling, largely due to its non-deterministic nature. It also forced
the notion of TAdds (Section 3.4).

6.1. A Scenario

The amount of recursion occurring within the NTCS may not be |

obvious; the following simplified scenario applies to sending a
message to a destination for the first time, with monitoring and time
correction enabled.

As the application level Send is initiated, control passes to the
LCM-layer, which generates a time stamp for monitor data. A
distributed time primitive is called, which may recursively call on the
ComMod to communicate with its support module. If this is the first
such communication, it will call the resource location primitives to
locate the module, invoking the ComMod recursively again. Once
resolved, it will send the message, at which time the entire process
we are describing will occur recursively for that send (time
correction and monitoring are disabled here, to avoid the obvious
infinite recursion). As a further complication, a time correction may
involve multiple messages to multiple modules. With the time stamp
now generated, the original send passes to the IP-layer. This
contacts the naming service for network resolution, invoking the
NSP-layer recursively again. Once complete, the ND-layer opens
the channel and sends the message. Upon success, the LCM-layer
sends data to the monitor by calling itself. If this is the first such
communication, the monitor is first located, and the connection
established, as with the time service above. Control then returns to
the application.

6.2. Debugging

Outside of the conventional problems of distributed
debugging [13], recursion added considerably to the difficulties. It
became difficult to simply understand what the system was doing at
run-time, as the above scenario attempted to demonstrate. The
NTCS and DRTS functions often-call on each other in unpredictable
ways (e.g., time service data communication only occurs
periodically, and Name Server calls depend on the local NTCS
state), resulting in non-deterministic, multiple-level recursion.
Furthermore, we have ignored the housekeeping which must occur
every time the passive Nucleus is called. None of this is
deterministic from the programmer’s point of view. Further, one is
usually looking at two or more such modules, concurrently.

Thus, the need for large amounts of debug information became
apparent. For example, simple tracebacks are largely inadequate.
One must also know why a layer is being called, and who is calling
it. However, adequate selectivity in observing this information is
equally important. We have not yet devised an adequate
mechanism for dealing with this problem.

6.3. Exception Handling

The NTCS (like any communication system), quickly became
inundated with the handling of unlikely exceptional conditions,
attempting to gracefully recover from unexpected situations. Most
of these are not errors, but are simply due to the non-deterministic
nature of this type of system; at any point in time, one can be certain
of very little.

One negative side effect of recovering from these conditions is
that the better the system is at it, the less one may know about how
it is actually running. Logic, or even coding errors, may be covered
up by layers of relentless exception handlers. While a running table
of errors could be maintained and monitored, the clean layering and
recursive nature of this system complicate the matter.

In a cleanly layered system, a given layer is usually unaware of
why it was called, or which layer called it, and has little knowledge of

the external state (in addition to the classic difficulty of assessing
the distributed state [9]). Thus, it is difficult for it to decide whether a
particular exception is, or is not, an error. In many cases, such
conditions are reasonable all but a small fraction of the time.

Recursion within the NTCS only complicates this problem by
adding to the unknowns. As the previous scenario demonstrated, a
given layer can be called from above or below, often while it is in the
middle of some other action. The following experience is offered as
an example of the difficulty.

The virtual circuit between a module and the Name Server may
break. During the next Name Server communication, the following
will occur. The ND-Layer will detect the failed circuit, and clear it
out. Control will be returned to the LCM-Layer, where the
forwarding address table will be checked, to no avail. This results in
an LCM-Layer address trap, which automatically queries the
NSP-Layer for the status of this UAdd. This, of course, attempts to
talk to the Name Server, which ends up at the ND-Layer where this
all started. It will see the dead circuit, and recursively run through
this whole thing until either the stack overflows, or the connection
can be reestablished with the Name Server, whichever occurs first.
In operation, both were observed.

Since layers below the NSP-Layer know nothing of the Name
Server, they are unable to stop this problem. The only layer with
explicit knowledge of the Name Server, the NSP-Layer, knows
nothing of connections or forwarding addresses. This problem was
eventually patched in the LCM-Layer address fault handler,
although it also should not know of the Name Server. As an
interesting note, the exception which caused this address trap is
reasonable in all cases but this one.

7. Results

The current NTCS implementation has demonstrated the
feasibility of our original design concepts, in a number of large,
working systems. The ability to design the entire NTCS around a
single portable Nucleus, and that in turn, around clean internal
layers, both simplified the development and added to its integrity.
As a result, both the naming service and internet support could then
be developed in a completely portable fashion, reducing their
development time and allowing them to easily distribute. In addition,
the complete separation of the naming service from the Nucleus has
been quite advantageous. Both the naming scheme and the
naming service implementation are currently being replaced, with
minimal impact on the rest of the system. The former will be
attribute-value based, while the latter will be replicated for failure
resiliency. Lastly, the inter-machine data conversion scheme has
worked well, eliminating needless conversions and dynamically
adapting to the environment as modules are relocated.

However, while the layered architecture has proven its utility, we
largely underestimated the difficulty of designing the system initially
in this manner; it added considerably to the development time. In a
similar sense, the recursive nature of this architecture is a double
edged issue; while it simplified the design of many support modules
(both internal to the NTCS (the naming service and internet
scheme), and external (monitoring and time service), it added
considerably to the already difficult task of debugging and exception

- handling. From our experiences, however, the benefits of both of

these approaches have far outweighed the problems.

From the application viewpoint, the NTCS has proved to be a
reasonable mechanism for developing this class of distributed
application. It has been successfully employed in three generations
of distributed information retrieval systems, during its development
over the last two years. In addition, the concept of a distributed
run-time support (DRTS) system, built on top of the NTCS, has
been effective method of providing distributed system level support.
It does, however, add to the recursion complexity, since the NTCS
must also use some of these services.



8. Conclusion

The NTCS has provided a reasonable foundation for this class of
distributed application. It has been successfully employed in three
generations of distributed information retrieval systems, during its
development over the last two years. The current implementation
has demonstrated the feasibility of a number of novel design
concepts, while also clearly demonstrating where additional work is
required. It has provided both a working communication system for
the URSA development, as well as a flexible framework for future
research.
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